Quickstart¶
Get up and running with ReAct Agent Framework in 5 minutes!
Step 1: Install¶
Step 2: Configure API Key¶
Create a .env
file:
Step 3: Create Your First Agent¶
Create a file my_agent.py
:
from react_agent_framework import ReactAgent
# Create agent
agent = ReactAgent(
name="Assistant",
description="A helpful AI assistant"
)
# Add a simple tool
@agent.tool()
def greet(name: str) -> str:
"""Greet someone by name"""
return f"Hello, {name}! Nice to meet you!"
# Run the agent
answer = agent.run("Greet Alice")
print(answer)
Step 4: Run It¶
Output:
Step 5: Add More Tools¶
from react_agent_framework import ReactAgent
agent = ReactAgent(name="Calculator Agent")
@agent.tool()
def add(a: float, b: float) -> str:
"""Add two numbers"""
return f"{a} + {b} = {a + b}"
@agent.tool()
def multiply(a: float, b: float) -> str:
"""Multiply two numbers"""
return f"{a} × {b} = {a * b}"
# Agent can now use multiple tools
answer = agent.run("What is 5 plus 3?")
print(answer) # "8"
answer = agent.run("Multiply 4 by 7")
print(answer) # "28"
Step 6: Use Built-in Tools¶
from react_agent_framework import ReactAgent
agent = ReactAgent(name="Research Agent")
# Use all search tools
agent.use_tools("search.*")
# Now agent can search the web
answer = agent.run("What is the latest news about AI?")
print(answer)
Step 7: Try Different Providers¶
Step 8: Enable Verbose Mode¶
See the agent's reasoning process:
agent = ReactAgent(name="Debug Agent")
@agent.tool()
def search(query: str) -> str:
"""Search for information"""
return f"Results for: {query}"
# Enable verbose mode
answer = agent.run(
"Search for Python programming tips",
verbose=True # Shows step-by-step reasoning
)
Output:
============================================================
ITERATION 1
============================================================
Thought: I need to search for Python programming tips
Action: search
Action Input: Python programming tips
Observation: Results for: Python programming tips
Thought: I have the search results
Action: finish
Action Input: Found Python programming tips
============================================================
Answer: Found Python programming tips
Step 9: Add Memory¶
Make your agent remember conversations:
from react_agent_framework import ReactAgent
agent = ReactAgent(
name="Memory Agent",
enable_memory=True # Simple memory
)
@agent.tool()
def save_note(note: str) -> str:
"""Save a note"""
return f"Saved: {note}"
# First conversation
agent.run("Save a note: Meeting at 3pm")
# Later conversation - agent remembers context
agent.run("What time is my meeting?")
# Agent can use memory to recall the saved note
What's Next?¶
-
Build Complete Agents
Learn to build sophisticated agents
-
Explore Built-in Tools
Discover all available tools
-
Add Memory
Give your agent memory
-
Use MCP Servers
Connect to external tools
Common Patterns¶
Research Agent¶
agent = ReactAgent(name="Researcher")
agent.use_tools("search.*")
answer = agent.run("Research quantum computing applications")
File Management Agent¶
agent = ReactAgent(name="File Manager")
agent.use_tools("filesystem.*")
answer = agent.run("List all Python files in current directory")
Calculator Agent¶
agent = ReactAgent(name="Calculator")
agent.use_tools("computation.*")
answer = agent.run("Calculate the compound interest on $1000 at 5% for 10 years")
Multi-Tool Agent¶
agent = ReactAgent(name="Multi-Tool Agent")
agent.use_tools("*") # All tools
answer = agent.run("Search for Python tutorials and save results to a file")
You're Ready!
You now know the basics of ReAct Agent Framework. Explore the Features section to learn more!